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The main purpose of this paper is to report results of quantum mechanical calculation of the H2 system using
the q-Integral method with correlation corrections to the SCF (Self Consistent Field) wave functions included
through the Møller-Plesset second-order perturbation (MP2) and Coupled-Cluster (CC) theory. Using the
q-Integral method, we evaluated potential energy curves, rovibrational spectroscopy constants, rovibrational
spectra, interatomic equilibrium distance and longitudinal static hyper(polarizability). All calculations were
carried out through the STO-3G, STO-6G, and double-� (DZV) atomic basis set. The q-Integral method was
implemented in the source code of the general ab initio quantum chemistry package GAMESS.

1. Introduction

The challenge of modern ab initio methods of electronic
structure is to perform highly accurate calculations at a lower
computational cost. An alternative way to accomplish this goal
is through the development of scaling algorithms of important
quantities such as: one and two-electron integrals, Fock operator,
molecular orbital, etc. An indicator of the cost size of a
computational method is the behavior of its scaling. Scaling
behavior is usually expressed as NR, where N is the number of
the base functions involved in the calculation and R refers to
the scaling exponent, which indicates how the computational
cost of the method increases with the number of base set
function. For example, MP2 electron correlation methods,1

CCSD,2 CCSD(T),3 CCSDT,4 and CCSDTQ5 scale with N5, N6,
N7, N8, and N10, respectively. This means that doubling the
number of base functions makes the computational cost of these
methods increase by factors of 32, 64, 128, 256, and 1024,
respectively.

One of the most traditional methods of electronic structure
is the Hartree-Fock method (HF),6-9 which is, formally, cited
as a method that scales with N4. This scaling of N4 comes from
the number of integrals of two-electron (N2e) and four-centers,
as follows

where µ, ν, λ, and σ are the atomic orbitals. However, many
two-electron integrals have a negligible value and can therefore
be discarded a priori. However, the computational cost of the
HF method in a large molecular system can be drastically
reduced using the inequality of Schwarz,10

This relation allows a reduction in the calculation of integrals
of two-electrons to N2 log N. In ref 11 it was shown analytically
that (N2e) scales as N2(ln N)2. Subsequently, a methodology was
proposed which found that N2e scales as N2ln N.12 An estimate
that N2e scales as N2.2-2.3 was reported in ref 13.

To minimize part of these computational problems, we
proposed in ref 14 an alternative strategy to reduce the CPU
time to calculate the two-electron integrals in ab initio molecular
calculations. This was called the q-Integral method.14,15 In the
q-Integral method, the multicenter electronic integrals are
described by analytic functions of the interatomic distances. This
method reduces substantially the CPU time for calculation of
bielectronic integrals used in calculations of ab initio molecular
quantum mechanics. This approach makes it possible to write the
bielectronic integrals as analytical functions of the internuclear
distances, and consequently the electron energy is also a function
of interatomic distances and LCAOs coefficients as E ) E[Cµνλσ,q
- Iµνλσ(R)], where q - Iµνλσ(R) is called the q-Integral and R is the
distance between nuclei A and B. More details about the q-Integral
method are presented in the next section.

In this context and using contracted base functions (φµ
CGF )

∑p)1
L dpφp

GF), we have

here
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where r12 ) |rb2 - rb1|, rbi is the position vector of the electron i,
the sets {d} and {R} are the contraction coefficients and
exponents, respectively, L is the number of contracted Gaussians
functions used to expand the atomic orbital, and µ, ν, λ, and σ
are the atomic orbitals.

Thus, we get a new scaling on the right side of eq 3 where
for each integral of type 〈µν|λσ〉 it is necessary to calculate L4

integrals of the type 〈pq|st〉. So, formally, the total number of
integrals of two-electron and four centers of type 〈pq|st〉 must
be N4 × L4. In the q-Integrals method, we see that each integral
〈µν|λσ〉 must be represented by an analytical function of the
interatomic distances (R), in other words,

reducing the total number of two-electron integrals to N4. It
should be noted that the scaling methodologies, cited above,
remain valid when added to the q-Integral method. The accuracy
of these molecular properties can be obtained, in part, by
including the electronic correlation (EC) effects.16

The main goal of this work is to examine the accuracy of
the q-Integrals as a function of internuclear distance, through
some levels of calculations, with inclusion of the correlation
corrections to the SCF wave functions. However, instead of just
comparing the values of the q-Integrals with the ones obtained
by the traditional approach, we chose to compute properties
which are very sensitive to the electronic integrals in function
of the interatomic distance. To this end, we calculated the
molecular properties of the H2 system using the q-Integral
method with EC effect included through the Møller-Plesset
(MP2) second-order perturbation1 and Coupled-Cluster (CC)2-5

theory. Today, CC theory has emerged as the most accurate,
widely applicable approach for the correlation problem in
molecules.

In this work, the q-Integral method was used in four cases
using the MP2 and CC (CCD and CCSD approach) theory: (i)
to build up the potential energy curves (PEC) of the molecular
system H2 with the following atomic basis sets: STO-3G, STO-
6G, and double-� (DZV), considering several interatomic
distances varying between 0.5 and 5.0 bohr; (ii) to evaluate the
spectroscopic constants and the rovibrational spectra for the
related molecular system; (iii) to optimize the interatomic
distance for the related molecular system; (iv) to calculate the
static linear polarizability and second longitudinal static hyper-
polarizability using two different approaches: the Coupled-
Hartree-Fock (CPHF)17 and Field Finite (FF)18 methods.

This paper is organized as follows: In section 2 we present
the computational details and the q-Integral method. Our results
as well as the discussion are presented in section 3. In section
4, we display our conclusions.

2. Computational Details and q-Integral Method

The q-Integral method is based on the generalized exponential
function.19-21 The advantage of this procedure, when compared
with the usual one, is that the CPU time for calculation of two-
electron integrals is substantially reduced. The generalization
of the exponential function was proposed by Borges21 based
on the Tsallis Statistics, in the following way:

The parameter q comes from the Tsallis statistics20 defined by
a microcanonic ensemble, that is, Sq ) k(1 - ∑i

Wpi
q)/(q - 1),

where pi are the probabilities associated with W microstates
(configurations), k is a positive constant, and q is a real
parameter that generalizes the usual statistics. In the limit q f
1, the generalized q-Exponential function (eq 6) is equivalent
to the usual exponential functional in the limit q f 1 and the
q-entropy goes to Boltzmann entropy as follows: S1 ≡ limqf1 Sq

) -k∑i
Wpi ln pi.

In a previous paper15 we introduced the generalized Morse
function (q-Morse) in the HF methodology,

where y0, R, �, q, R0, γ, and C are adjustable parameters. To fit
the two-electron integrals, using the q-Morse function, only these
seven parameters are necessary. It is important to point out that
the success of the fitting procedure is, in part, due to the
q-Exponential function’s flexibility.

In the eq 3, the number of the two-electron integrals 〈pq|st〉
scales with L4. The sum of L4 Gaussian integrals will be
described by just one function, as follows,

where y0µνλσ, Rµνλσ, �µνλσ, qµνλσ, γµνλσ, R0µνλσ, and Cµνλσ are
parameters adjusted to fit the sum of all two-electron integrals
in the contracted Gaussian form.

As eq 3 expresses the value of the two-electron integral as a
function of the internuclear distance, the value of any integral
〈µν|λσ〉q can be obtained, at any given interatomic distance R,
just by inserting this value in eq 8.

In this methodology, the total electronic energy is given as a
function of the interatomic distance through the two-electron
integrals as follows:

more precisely,

where Hµν is one-electron part of the Hamiltonian and q -
Iµνλσ(R) ) 〈µν|λσ〉q is the q-Integral. The Cµν are the coefficients
of the molecular orbital expansion in terms of the atomic orbitals
(LCAO). The indices µ, ν, λ, and σ, using the STO-LG basis
set, can only assume two values (1 and 2) in case of the H2

molecule. For a DZV basis set the indices µ,ν,λand σ can assume
values between 1 and 4, and the summation in eq 10 will involve
a much larger number of terms.

〈µν|λσ〉 ) analytical function(R) (5)

expq(r) ≡ [1 + (1 - q)r]1/(1-q) (6)

M(r) ≡ y0 + �eq
-R(R-R0)γ

(eq
-R(R-R0)γ

- C)

≡ y0 + �[1 - (1 - q)R(R - R0)
γ]1/(1-q) ×

([1 - (1 - q)R(R - R0)
γ]1/(1-q) - C)

(7)

q - Iµνλσ(R) ) 〈µν|λσ〉q

≡ y0µνλσ + �µνλσeqµνλσ

-Rµνλσ(R - Rµνλσ)γµνλσ ×

(eqµνλσ

-Rµνλσ(R - Rµνλσ)γµνλσ - Cµνλσ)

(8)

E ) E{[C],q-Iµνλσ(R)} (9)

EHF ) ∑
µ

∑
ν

CµνHµν+∑
µ

∑
ν

Cµν ∑
λ

∑
σ

Cλσ[〈µν|λσ〉q -

1
2
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In the q-Integral method, the electronic correlation energy in
MP2 (EMP2) and CCD (ECCD) methods can be written as

and

where i, j stand for occupied and a, b for unoccupied orbitals.
The quantities εi, εj, εa, and εb are the corresponding orbital
energies and Cij

ab is the cluster amplitude. In eqs 11 and 12 we
introduce the notation: 〈ij||ab〉q ) 〈ij|ab〉q - 1/2〈ib|aj〉q.

The H2 rovibrational spectroscopic constants were calculated
using two different approaches: in the first one, the spectroscopic
constants were obtained combining the rovibrational energies
obtained through Schrödinger nuclear equation and the one
below:22

where V and J are the vibrational and rotational levels,
respectively. From this combination one can obtain the closed
equations for rovibrational spectroscopic constants (see eq 13
in ref 15). To get the rovibrational energies, we solved
Schrödinger nuclear equation using the Discrete Variable
Representation method (DVR).23 Another methodology used to
evaluate the spectroscopic constants was that of Dunham,24

which is obtained by comparing eq 13 and the potential energy
curves (PEC) written with a Taylor expansion around the
equilibrium distances. To use these approaches, it is necessary
to know the analytical forms of the electronic energies for
several nuclear configurations of the molecular system. The best
fit was obtained using one analytical function based on a
polynomial q-Bond Order (q-BO)25 coordinates of the tenth
degree.

In the presence of a static uniform electric field (Fb) the
perturbed energy (E) of a molecule can be written as

where summations over the repeated indices are assumed. Here,
E0 is the energy of the molecule in the absence of an external
electric field and µi are the components of the permanent dipole
moment, Rij are the components of the dipole polarizability, �ijk

are the components of the first dipole hyperpolarizability, and
γijkl are the components of the second dipole hyperpolarizability.

The HF longitudinal static linear polarizability (Rzz) and
second hyperpolarizability (γijkl) was calculated analytically
using the Coupled-Hartree-Fock (CPHF)17 procedure and
numerically using the Finite Field Method (FF).18 At the MP2,

CCD, and CCSD levels, the calculation of these properties was
performed numerically using the FF method. These molecular
properties were obtained from FF calculations using positive
and negative field strengths in the range of 0.005 au. Previous
studies, based on MP2 calculations, have been reported by
showing the importance of the inclusion of electron correlation
effectstoobtainaccurateestimatesforthehyper(polarizabilities).26-28

All fits performed in this work were obtained using hybrid
optimization procedure based on the global optimization method
known as Generalized Simulated Annealing (GSA),29-33 the
simplex gradient method,34 and the Levenberg-Marquardt
methods.35,36 The q-Integral method was implemented in the
general ab initio quantum chemistry package GAMESS,37 where
all calculations were performed.

3. Results and Discussion

In this section we compare the results of different electronic
and dynamics properties evaluated with the q-Integral and the
usual methodology using the MP2 and CC methodologies. The
y0µνλσ, Rµνλσ, �µνλσ, qµνλσ, γµνλσ, R0µνλσ, and Cµνλσ are parameters
of the q-Morse fit of the symmetric part of the full matrix
〈µν|λσ〉q in terms of the interatomic distance, and were obtained
of the reference.15

In Table 1 we present the average CPU time (in microsec-
onds) to evaluate the two-electron integral of s-type using STO-
3G and STO-6G basis sets and the equivalent q-Integral. In the
calculation we used an Intel Q9300 (2.50 GHz) processor. These
results show that the q-Integral method is about 134.5 (2131.5)
times faster when compared to the CPU time of calculation using
the STO-3G(STO-6G) basis sets to calculate the two-electron
integrals. It is important to point out that the CPU time reduction
is more significant when larger molecular systems and basis
sets are employed. For this comparison we used also a
FORTRAN ab initio computational code developed and opti-
mized in our research group.

Figure 1a shows the H2 PECs using the STO-6G basis set
and corresponding q-Integrals (q-STO-6G integrals) as well as
the H2 PECs using the DZV basis set and the corresponding
q-Integrals (q-DZV integrals) calculated using the MP2 perturba-
tion theory. Figure 1b,c present the PECs using the STO-6G
and DZV basis sets and corresponding q-STO-6G and q-DZV
integrals calculated using the CCD and CCSD approaches of
CC theory, respectively. From these figures, one can see a good
agreement between the q-PECs and the PECs calculated at
different theory levels by using the 〈µν|λσ〉q and the 〈µν|λσ〉,
respectively. To avoid the proliferation of the figures only STO-
6G and DZV PECs were included in Figure 1.

In Table 2, we present the results of the maximum and
minimum deviation and the 	2 error between the calculation of
PECs and q-PECs obtained by the HF, MP2, CCD, and CCSD
theory levels using the STO-3G, STO-6G, and DZV basis set
functions and their respective q-Integrals. Note that the same
tendency for error found in the HF approach is verified when
the correlation corrections to the SCF wave function are
performed.

EMP2
) ∑

i<j
a<b

|〈ij| |ab〉q|2

εi + εj - εa - εb
(11)

ECCD ) ∑
i<j

∑
a<b

〈ij| |ab〉qCij
ab (12)

EνJ ) ωe(ν + 1
2) - ωexe(ν + 1

2)2
+ ωeye(ν + 1

2)3
+

... + [Be - Re(ν + 1
2) + ...]J(J + 1) (13)

E(F) ) E0 - ∑
i

µiFi -
1
2! ∑

ij

RijFiFj -

1
3! ∑

ijk

�ijkFiFjFk -
1
4! ∑

ijkl

γijklFiFjFkFl - · · · (14)

TABLE 1: Comparison between the Average CPU Time To
Evaluate a Two-Electron Integral of s-Type Using STO-3G
and STO-6G Basis Sets and the Equivalent q-Integral,
Respectively

basis sets/q-Integral average CPU time (µs)

STO-6G 666.0938
STO-3G 42.0313
q-Integral 0.3125
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Table 3 shows the interatomic equilibrium distance of the
H2 system using the STO-3G, STO-6G, and DZV basis sets
and corresponding q-Integrals calculated at the MP2, CCD, and
CCSD levels. The maximum (minimum) percent deviations
found between values for the equilibrium distance were 6.5 ×
10-6% (7.4 × 10-5%) at the HF level, 7.9 × 10-4% (7.3 ×
10-5%) at the MP2 level, and 5.3 × 10-2% (5.8 × 10-4%) at
both the CCD and CCSD levels.

Table 4 lists a set of rovibrational transitions using both the
PECs and the q-PECs for the different basis sets. The maximum
(minimum) difference between the PECs and the equivalent
q-PECs rovibrational spectra (∆E(ν-ν′,J) ) E(ν-ν′,J)(PEC) -
E(ν-ν′,J)(q-PEC)) considering all the calculated rovibrational
levels (J ) 0,1 and ν ) 0, 1, 2, 3) is ∆E(0-1,J)1) ) 3.72 cm-1

(∆E(0-1,J)0) ) 1.23 cm-1) for the HF/STO-3G level; ∆E(0-1,J)1)

) 3.72 cm-1 (∆E(0-1,J)0) ) 1.23 cm-1) for the HF/STO-6G level
and ∆E(0-3,J)0,1) ) 0.70 cm-1 (∆E(0-1,J)0,1) ) 0.23 cm-1) for
the HF/DZV level; ∆E(0-3,J)1) ) 4.76 cm-1 (∆E(0-1,J)1) ) 0.44
cm-1) for the MP2/STO-3G level; ∆E(0-3,J)0) ) 0.55 cm-1

(∆E(0-1,J)1) ) 0.44 cm-1) for the MP2/STO-6G level; and

∆E(0-3,J)0) ) 2.62 cm-1 (∆E(0-1,J)0) ) 1.76 cm-1) for the MP2/
DZV level; ∆E(0-3,J)1) ) 6.48 cm-1 (∆E(0-1,J)0) ) 0.73 cm-1)
for the CCD/STO-3G level; ∆E(0-3,J)0,1) ) 2.21 cm-1

(∆E(0-1,J)0,1) ) 0.69 cm-1) for the CCD/STO-6G level and
∆E(0-2,J)0) ) 1.51 cm-1 (∆E(0-3,J)1) ) 1.18 cm-1) for the CCD/
DZV level; ∆E(0-1,J)1) ) 7.69 cm-1 (∆E(0-1,J)0) ) 1.16 cm-1)
for the CCSD/STO-3G level; ∆E(0-3,J)0) ) 2.28 cm-1

(∆E(0-1,J)1) ) 0.49 cm-1) for the CCSD/STO-6G level and
∆E(0-2,J)0) ) 1.46 cm-1 (∆E(0-3,J)1) ) 0.99 cm-1) for the CCSD/
DZV level. These results indicate that the difference between
the PEC and the corresponding q-PEC rovibrational spectra
decrease when high-quality basis set functions are used.

The PECs and the q-PECs spectroscopic constants obtained
through the Dunham method and nuclear Schrödinger solutions
are shown in Tables 5 and 6, respectively. The percent deviations
found between the PEC and q-PEC values for the rotational
constant (Be) using the Dunham method were 0.00% for all basis
sets employed in this work at the HF and MP2 level. At the
CCD (CCSD) level these deviations were: 0.097% (0.097%),
0.00% (0.00%), and 0.02% (0.03%) for the STO-3G, STO-6G,

Figure 1. Comparison between DZV PEC (circle), q-DZV PEC (solid line), STO-6G PEC (triangle), and q-STO-6G (dashed line) using (a) MP2,
(b) CCD, and (c) CCSD levels.

TABLE 2: Maximum, Minimum, and �2 Errors between the PEC and the Respective q-PEC Obtained by HF, MP2, CCD, and
CCSD Levels

STO-3G/q-STO-3G STO-6G/q-STO-6G DZV/q-DZV

level max error min error 	2 error max error min error 	2 error max error min error 	2 error

HFa 7.7 × 10-5 5.2 × 10-8 1.2 × 10-9 3.5 × 10-5 1.9 × 10-7 2.6 × 10-10 1.5 × 10-5 2.2 × 10-7 2.5 × 10-11

MP2 9.0 × 10-5 2.4 × 10-7 1.4 × 10-9 1.3 × 10-4 0.0000 1.1 × 10-9 3.0 × 10-5 0.0000 4.3 × 10-11

CCD 6.6 × 10-5 8.9 × 10-7 9.6 × 10-10 2.1 × 10-5 9.5 × 10-7 1.4 × 10-10 4.3 × 10-4 0.0000 1.2 × 10-10

CCSD 6.6 × 10-5 1.2 × 10-7 1.0 × 10-9 2.1 × 10-5 9.5 × 10-7 1.4 × 10-10 5.0 × 10-4 0.0000 1.1 × 10-10

a Results obtained from ref 15.

TABLE 3: Optimized Equilibrium Distance of the H2 System Obtained by HF, MP2, CCD, and CCSD Methods

level STO-3G q-STO-3G STO-6G q-STO-6G DZV q-DZV

HF 1.345917 1.345918 1.342678 1.342680 1.379177 1.379186
MP2 1.367743 1.367744 1.364378 1.364379 1.393214 1.393225
CCD 1.388808 1.389549 1.385283 1.385275 1.408609 1.408881
CCSD 1.388808 1.389549 1.385283 1.385275 1.409631 1.409910
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TABLE 4: H2 Rovibrational Spectra (cm-1) for Different Basis Sets and the Respective PECs and q-PECs Obtained by the HF,
MP2, CCD, and CCSD Methods

rovibrational spectra

level ν J STO-3G q-STO-3G STO-6G q-STO-6G DZV q-DZV

HFa 0 f 1 0 5290.48 5291.71 5319.97 5320.20 4414.47 4414.12
0 f 2 10413.17 10415.35 10472.49 10472.99 8613.36 8613.23
0 f 3 15379.29 15382.90 15464.29 15464.99 12611.57 12612.03
0 f 1 5286.71 5287.98 5316.35 5316.58 4408.61 4408.27
0 f 2 1 10405.89 10408.14 10465.37 10465.87 8601.98 8601.85
0 f 3 15368.70 15372.42 15453.79 15454.49 12594.98 12595.43

MP2 0 f 1 0 5058.79 5058.27 5089.26 5089.39 4306.60 4304.82
0 f 2 9962.79 9964.34 10027.68 10028.04 8406.26 8403.79
0 f 3 14738.36 14742.97 14834.46 14835.01 12318.64 12316.02
0 f 1 1 5053.83 5053.39 5084.40 5084.53 4300.07 4298.31
0 f 2 9952.11 9953.80 10016.97 10017.33 8392.67 8390.24
0 f 3 14721.12 14725.88 14816.93 14817.47 12297.58 12295.00

CCD 0 f 1 0 4776.79 4777.52 4806.41 4807.10 4119.86 4118.56
0 f 2 9350.61 9354.01 9409.53 9411.03 7992.77 7991.26
0 f 3 13735.82 13742.18 13817.21 13819.42 11632.79 11631.56
0 f 1 1 4771.33 4772.14 4801.05 4801.74 4112.82 4111.55
0 f 2 9339.09 9342.61 9397.96 9399.47 7978.23 7976.77
0 f 3 13717.49 13723.97 13798.55 13800.76 11610.44 11609.26

CCSD 0 f 1 0 4776.49 4777.65 4806.64 4807.13 4100.40 4101.71
0 f 2 9350.09 9354.32 9410.00 9411.36 7949.62 7951.08
0 f 3 13735.16 13742.73 13817.94 13820.22 11559.89 11560.92
0 f 1 1 4771.02 4772.26 4801.27 4801.76 4093.31 4094.59
0 f 2 9338.57 9342.92 9398.43 9399.78 7934.96 7936.37
0 f 3 13716.83 13724.52 13799.28 13801.54 11537.33 11538.32

a Results obtained from ref 15.

TABLE 5: H2 Rovibrational Spectroscopic Constants (cm-1) Obtained with the Dunham Method for PECs and q-PECs Using
the HF, MP2, CCD, and CCSD Methods

level STO-3G q-STO-3G STO-6G q-STO-6G DZV q-DZV

HFa Be 65.94 65.94 66.25 66.25 62.79 62.79
ωe 5443.95 5444.47 5431.69 5430.35 4480.50 4481.21
ωexe 99.61 96.81 89.69 89.58 121.10 120.80
Re 2.076 2.023 1.894 1.894 3.009 2.999

MP2 Be 63.85 63.85 64.16 64.16 61.53 61.53
ωe 5243.68 5246.06 5261.54 5261.56 4532.79 4530.94
ωexe 108.63 105.54 99.74 99.83 125.35 124.11
Re 2.282 2.221 2.097 2.102 3.073 3.052

CCD Be 61.92 61.86 62.24 62.24 60.17 60.18
ωe 4998.00 4995.27 5019.82 5019.96 4375.75 4379.04
ωexe 120.64 118.13 114.52 114.30 138.18 139.33
Re 2.585 2.529 2.398 2.396 3.327 3.352

CCSD Be 61.92 61.86 62.24 62.24 60.11 60.09
ωe 5000.23 4995.17 5019.58 5019.85 4365.24 4364.36
ωexe 121.04 118.08 114.37 114.16 140.33 142.07
Re 2.554 2.529 2.397 2.395 3.351 3.378

a Results obtained from ref 15.

TABLE 6: H2 Rovibrational Spectroscopic Constants (cm-1) Obtained with Solution of the Nuclear Schrödinger Equation for
PECs and q-PECs Using the HF, MP2, CCD, and CCSD Methods

level STO-3G q-STO-3G STO-6G q-STO-6G DZV q-DZV

HFa ωe 5464.93 5467.25 5490.11 5490.21 4638.14 4637.06
ωexe 92.13 92.87 88.70 88.61 118.79 118.38
ωeye 1.86 1.99 1.12 1.10 2.48 2.45
Re 2.016 1.998 1.878 1.779 3.088 3.081

MP2 ωe 5234.57 5230.00 5254.66 5254.55 4526.48 4523.11
ωexe 97.49 94.98 90.34 90.18 118.56 117.60
ωeye 4.38 4.11 3.20 3.18 3.29 3.20
Re 2.109 2.047 1.930 1.934 3.005 2.987

CCD ωe 4988.49 4985.82 5012.66 5012.99 4373.82 4370.92
ωexe 112.42 110.24 107.92 107.68 134.35 133.37
ωeye 2.36 2.09 1.30 1.26 2.36 2.27
Re 2.438 2.380 2.267 1.984 3.293 3.268

CCSD ωe 4988.09 4985.91 5012.85 5012.65 4356.84 4359.84
ωexe 112.38 110.22 107.90 107.47 135.12 136.14
ωeye 2.36 2.09 1.30 1.24 2.06 2.16
Re 2.437 2.380 2.269 2.265 3.305 3.330

a Results obtained from ref 15.
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and DZV basis sets, respectively. For the equilibrium vibrational
frequency (ωe) using the Dunham method these percent devia-
tions were 0.045% for the STO-3G basis, 0.00038% for the
STO-6G basis and 0.040% for the DZV basis at MP2 level. Still,
for the ωe constant, at level CCD (CCSD) these percent
deviations were 0.054% (0.10%), 0.0028% (0.0054%), and
0.075% (0.020%) for the STO-3G, STO-6G, and DZV basis
sets, respectively. For the first anharmonic constant (ωexe) and
the vibration-rotation coupling constant (Re), these percents
deviations were 2.84% and 2.67% (STO-3G basis), 0.09% and
0.24% (STO-6G basis), and 0.98% and 0.68% (DZV basis) at
the MP2 level and 2.08% and 2.17% (STO-3G basis), 0.19%
and 0.083% (STO-6G basis), and 0.83% and 0.75% (DZV basis)
at the CCD level, and 2.44% and 0.98% (STO-3G basis), 0.18%
and 0.083% (STO-6G basis), and 1.24% and 0.80% (DZV basis)
at the CCSD level. On the other hand, when we used the nuclear
Schrödinger equation, the following percents deviations were
observed for ωe, ωexe, ωeye (the second anharmonic constant),
and Re, respectively: 0.087%, 2.57%, 6.16%, 2.94% (STO-3G),
0.0021%, 0.18%, 0.62%, 0.21% (STO-6G), and 0.074%, 0.81%,
2,74%, 0.60% at (DZV) basis at the MP2 level; 0.053%, 1.94%,
11.44%, 2.38% (STO-3G), 0.0066%, 0.22%, 3.08%, 12.48%
(STO-6G), and 0.066%, 0.72%, 3.81%, 0.76% at (DZV) basis
at the CCD level. The same tendency is verified for the CCSD
level, and therefore it was omitted to avoid the proliferation of
number.

Although the deviations are small, it is important to mention
that, even when a q-BO polynomial form17 of the tenth degree
is used, we can still have a slight (	2) accuracy problem in the
electronic energy fit procedure. This means that part of
the discrepancy between the PECs may be due not only to the
q-Integrals but also to the quality of the electronic energy fit.

Figure 2 shows a comparison of the DZV PECs with the
q-PECs obtained using q-DZV integral at the HF, MP2, and
CCSD levels. From these figures, we can see a good agreement
between q-PECs and the PECs calculated at different theory
levels. From all basis sets and levels of theory considered in
this work the CCSD/DZV and CCSD/q-DZV are the ones that
best describe the H2 potential energy curve, as expected,
indicating that the small deviation between the q-Integral and
standard methods to solve the two-electron integral does not
compromise the superiority of DZV PEC in comparison to the
PEC obtained using the single-� basis sets.

Parts a and b of Figure 3 show the bond length dependence
of the longitudinal static polarizability using the STO-6G and
DZV basis sets and their respective q-Integrals. In Figure 3a,
the linear polarizability was calculated analytically using the
CPHF procedure, and in Figure 3b it was calculated numerically
using the FF method. The maximum and minimum deviation
and the 	2 error between the bond length dependence of linear
polarizability using the q-Integral method and the usual one are
shown in Table 7.

In Figure 4a,b we show the length dependence of the
longitudinal static second hyperpolarizability of the H2 calculated

Figure 2. Comparison between the PECs using STO-3G (dashed line),
STO-6G (dotted line), and DZV (circle) basis sets and the PEC using
the q-Integral (solid line) obtained from the DZV basis set.

Figure 3. Bond length dependence of the longitudinal static linear
polarizability calculated using STO-6G (triangle line), q-STO-6G (solid
line), DZV (circle), and q-DZV (solid line) obtained by (a) CPHF and
(b) FF calculations.

TABLE 7: Maximum, Minimum, and �2 Errors Found for Bond Length Dependence of the Longitudinal Static Linear
Polarizability Obtained by Different Methodologies

STO-3G/q-STO-3G STO-6G/q-STO-6G DZV/q-DZV

level max error min error 	2 error max error min error 	2 error max error min error 	2 error

CPHF 4.3 × 10-4 6.8 × 10-7 7.3 × 10-7 1.1 × 10-4 4.8 × 10-7 2.5 × 10-7 3.3 × 10-4 4.3 × 10-6 4.9 × 10-7

FF-HF 3.9 × 10-4 6.3 × 10-7 6.6 × 10-7 1.1 × 10-4 4.8 × 10-7 2.5 × 10-7 3.3 × 10-4 4.3 × 10-6 4.9 × 10-7

FF-MP2 8.8 × 10-4 1.4 × 10-7 6.6 × 10-7 8.8 × 10-4 1.4 × 10-7 6.6 × 10-7 9.5 × 10-4 9.1 × 10-6 3.0 × 10-7

FF-CCD 2.1 × 10-3 1.1 × 10-5 1.0 × 10-5 2.1 × 10-3 1.1 × 10-5 1.0 × 10-5 9.2 × 10-4 4.6 × 10-5 8.9 × 10-6

FF-CCSD 2.0 × 10-3 3.3 × 10-5 2.6 × 10-5 2.0 × 10-3 3.3 × 10-5 2.6 × 10-5 9.4 × 10-4 2.8 × 10-5 6.1 × 10-6
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analytically using the CPHF procedure and numerically using
the FF method, respectively. In both cases, the DZV basis sets
and your respectively q-DZV integrals were employed. For these
cases, the maximum (minimum) and 	2 errors between the bond
length dependence of second hyperpolarizability using the
q-Integral method and usual one were 4.5 × 10-3 (6.7 × 10-6)
and 4.9 × 10-7 au at the FF-HF/DZV(q-DZV) level and 2.1 ×
10-4 (2.8 × 10-7) and 4.7 × 10-7 au at the CPHF/STO-6G(q-
STO-6G) level.

All calculations described in this work were performed using
the general ab initio quantum chemistry package GAMESS.

4. Conclusions

In this paper we have investigated the accuracy of q-Integrals
as a function of the internuclear distance for H2 molecular
systems through some levels of calculations with inclusion of
the EC effects. To this end, we employed the q-Integral method
to construct the potential energy curve for the H2 molecule and
used the PEC to determine rovibrational levels and spectroscopic
constants of the molecule, which are properties that are very
sensitive to the form of the PEC. Furthermore, we determined
the bond length dependence of the longitudinal static linear
polarizability and second longitudinal hyperpolarizability and
optimized the interatomic distance for the related molecular
system. Our main conclusions follow:

1. There is a reasonable difference in the computational effort
to rate the matrix of the two-electron (〈µν|λσ〉) between both
usual and q-Integral methods. While the methodology requires,
formally, the calculation of N4 × L4 integrals of the kind 〈pq|st〉,

for the q-Integral method it is necessary to evaluate only N4

integrals 〈pq|st〉. In this case N and L are the number of base
functions and the number of contracted Gaussians functions used
to expand the atomic orbital, respectively.

2. Comparing the calculations of two-electron integrals of
the basic functions of the type contracted STO-LG, using the
ordinary method and the q-Integrals, it is clear that our procedure
is particularly more advantageous the greater the size of the
contraction.

3. The rovibrational levels and the spectroscopic constants
obtained with q-Integrals are in very close agreement with the
ones obtained through the standard procedure for calculating
the two-electron integrals. The same tendency is verified to
calculate longitudinal static longitudinal hyper(polarizability)
as well as optimized internuclear distances. Moreover, as the
quality of the basis set increases, so do the calculated spectro-
scopic constants using either standard (DZV) or q-Integral (q-
DZV) procedures.

4. The feasibility of using the q-Integral method opens the
perspective of applying it in calculations of large molecular
systems that, in the context of the current methods, are
prohibitive.

5. The results obtained clearly indicate that the q-Integral
method is accurate enough to be used in any molecular quantum
mechanical calculation.

Acknowledgment. This work is dedicated to Professor
Vincenzo Aquilanti who has given valuable contributions to
Quantum Chemistry. We gratefully acknowledge the support
given to this work by grants from CNPq and CAPES Brazilian
Agency Foundations.

References and Notes

(1) Møller, C.; Plesset, M. S. Phys. ReV. 1934, 46, 618.
(2) Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.
(3) Gauss, J.; Cremer, D. Chem. Phys. Lett. 1988, 150, 280.
(4) Noga, J.; Bartlett, R. J. J. Chem. Phys. 1987, 86, 7041.
(5) Kucharski, S. A.; Bartlett, R. J. Theor. Chim. Acta 1991, 80, 387.
(6) Hartree, D. R. Proc. Cambridge Philos. Soc. 1928, 24, 111; 1929,

25, 225.
(7) Fock, V Z. Phys. 1930, 61, 126.
(8) Roothaan, C. C. J. ReV. Mod. Phys. 1951, 23, 69.
(9) Pople, J. A.; Nesbet, R. K. J. Chem. Phys. 1954, 22, 571.
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